Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lancet Glob Health ; 11(6): e976-e981, 2023 06.
Article in English | MEDLINE | ID: covidwho-2316005

ABSTRACT

To inform the development of global wastewater monitoring systems, we surveyed programmes in 43 countries. Most programmes monitored predominantly urban populations. In high-income countries (HICs), composite sampling at centralised treatment plants was most common, whereas grab sampling from surface waters, open drains, and pit latrines was more typical in low-income and middle-income countries (LMICs). Almost all programmes analysed samples in-country, with an average processing time of 2·3 days in HICs and 4·5 days in LMICs. Whereas 59% of HICs regularly monitored wastewater for SARS-CoV-2 variants, only 13% of LMICs did so. Most programmes share their wastewater data internally, with partnering organisations, but not publicly. Our findings show the richness of the existing wastewater monitoring ecosystem. With additional leadership, funding, and implementation frameworks, thousands of individual wastewater initiatives can coalesce into an integrated, sustainable network for disease surveillance-one that minimises the risk of overlooking future global health threats.


Subject(s)
COVID-19 , Wastewater , Humans , Ecosystem , SARS-CoV-2 , COVID-19/epidemiology
3.
Environ Health Perspect ; 129(4): 45002, 2021 04.
Article in English | MEDLINE | ID: covidwho-1673983

ABSTRACT

BACKGROUND: Wastewater testing offers a cost-effective strategy for measuring population disease prevalence and health behaviors. For COVID-19, wastewater surveillance addresses testing gaps and provides an early warning for outbreaks. As U.S. federal agencies build a National Wastewater Surveillance System around the pandemic, thinking through ways to develop flexible frameworks for wastewater sampling, testing, and reporting can avoid unnecessary system overhauls for future infectious disease, chronic disease, and drug epidemics. OBJECTIVES: We discuss ways to transform a historically academic exercise into a tool for epidemic response. We generalize lessons learned by a global network of wastewater researchers around validation and implementation for COVID-19 and opioids while also drawing on our experience with wastewater-based epidemiology in the United States. DISCUSSION: Sustainable wastewater surveillance requires coordination between health and safety officials, utilities, labs, and researchers. Adapting sampling frequency, type, and location to threat level, community vulnerability, biomarker properties, and decisions that wastewater data will inform can increase the practical value of the data. Marketplace instabilities, coupled with a fragmented testing landscape due to specialization, may require officials to engage multiple labs to test for known and unknown threats. Government funding can stabilize the market, balancing commercial pressures with public good, and incentivize data sharing. When reporting results, standardizing metrics and contextualizing wastewater data with health resource data can provide insights into a community's vulnerability and identify strategies to prevent health care systems from being overwhelmed. If wastewater data will inform policy decisions for an entire community, comparing characteristics of the wastewater treatment plant's service population to those of the larger community can help determine whether the wastewater data are generalizable. Ethical protocols may be needed to protect privacy and avoid stigmatization. With data-driven approaches to sample collection, analysis, and interpretation, officials can use wastewater surveillance for adaptive resource allocation, pandemic management, and program evaluation. https://doi.org/10.1289/EHP8572.


Subject(s)
COVID-19 , Epidemiological Monitoring , SARS-CoV-2/isolation & purification , Wastewater/virology , Humans , Pandemics , United States
4.
Fam Med Community Health ; 9(Suppl 1)2021 11.
Article in English | MEDLINE | ID: covidwho-1537968

ABSTRACT

Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen's kappa comparable to human coders (0.62-0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility.


Subject(s)
Artificial Intelligence , Machine Learning , Cluster Analysis , Humans , Qualitative Research , Reproducibility of Results
5.
South Med J ; 114(12): 744-750, 2021 12.
Article in English | MEDLINE | ID: covidwho-1534911

ABSTRACT

OBJECTIVES: We sought to determine whether self-reported intent to comply with public health recommendations correlates with future coronavirus disease 2019 (COVID-19) disease burden. METHODS: A cross-sectional, online survey of US adults, recruited by snowball sampling, from April 9 to July 12, 2020. Primary measurements were participant survey responses about their intent to comply with public health recommendations. Each participant's intent to comply was compared with his or her local COVID-19 case trajectory, measured as the 7-day rolling median percentage change in COVID-19 confirmed cases within participants' 3-digit ZIP code area, using public county-level data, 30 days after participants completed the survey. RESULTS: After applying raking techniques, the 10,650-participant sample was representative of US adults with respect to age, sex, race, and ethnicity. Intent to comply varied significantly by state and sex. Lower reported intent to comply was associated with higher COVID-19 case increases during the following 30 days. For every 3% increase in intent to comply with public health recommendations, which could be achieved by improving average compliance by a single point for a single item, we estimate a 9% reduction in new COVID-19 cases during the subsequent 30 days. CONCLUSIONS: Self-reported intent to comply with public health recommendations may be used to predict COVID-19 disease burden. Measuring compliance intention offers an inexpensive, readily available method of predicting disease burden that can also identify populations most in need of public health education aimed at behavior change.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Health Behavior , Patient Compliance , Adult , Aged , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Self Report , Surveys and Questionnaires , United States/epidemiology
6.
Environ Health Perspect ; 129(5): 59001, 2021 May.
Article in English | MEDLINE | ID: covidwho-1299332
SELECTION OF CITATIONS
SEARCH DETAIL